
Appendix 4. SAmple bAtch ScriptS

Contains two scripts by Ken Stuart: PanoImageSorter.pl and PTMacPanoImageSorter.pl
(for MacPerl).

pAnoimAgeSorter.pl
#!/usr/bin/perl
This script takes sets of pano image files and sorts them into
folders and bracketed sets, saving a lot of time compared to
manually creating new folders, naming them, and then moving
files from the original to the sets. The specified folder must
contain a complete sets of files, i.e., if there are 10 nodes
and each node consists of 8 shots, each of which has 3 bracketed
images, then the folder must contain 240 images exactly.

use strict;

Path and name of folder with pano images, e.g.
/Users/jdoe/Desktop/Panos/originals
my $StartingFolder = “/Users/kenstuart/Desktop/originals”;

Path and name of folder to store sorted images.
my $EndingFolder = “/Users/kenstuart/Desktop/project”;

Number of images per pano, usually 4-8, including top and
bottom.
my $NumberOfImagesPerPano = 8;

Number of frames per shot, usually 3 if bracketing, or 1 if
no bracketing.
my $NumberOfBrackets = 3;

Names, in order, that you want to call bracketed sets, e.g.,
normal, dark, light. You should have the same number of terms
as number of brackets; if no brackets, you may wish to have a
generic term.
my @BracketNames = (“Normal”, “Dark”, “Light”);

Number of nodes shot.
my $NumberOfNodes = 17;

Enter a set of names for the folders that will contain each
node, e.g., apse, nave, northaisle, southaisle. If you leave
the list of node names blank, the script will assign them names

133

in the format “Node_n” where n is the number of the node.
my @NodeNames = (“A”, “B”, “C”);
my @NodeNames = ();
my $number = 0;
if ($#NodeNames == -1) {
 for (my $i=1; $i<=$NumberOfNodes; $i++) {
 if ($i < 10) {$number = “0”.$i;} else {$number = $i;}
 push(@NodeNames, “Node_”.$number);
 }
}

Enter file extension used to in image filenames, usually either
.jpg or .tif.
my $ImageFileNameExt = “.jpg”;

Check starting folder.
unless (-e $StartingFolder) {print “Could not find starting folder
$StartingFolder. Please check its name in this script on and on
the machine. Names may be case-sensitive, and should not contain
certain special characters such as spaces, slashes or colons.
Cannot continue until problem is resolved.\n\n”; exit;}

Load image files into a list and sort it.
opendir (DIRLIST, $StartingFolder) || die print “Cannot open
directory $@.”;
my @ImageFiles = grep {/$ImageFileNameExt$/i}
readdir(DIRLIST);
@ImageFiles = sort(@ImageFiles);
close (DIRLIST);

Confirm correct number of images in directory.
my $neededImages = $NumberOfImagesPerPano * $NumberOfBrackets *
$NumberOfNodes;
my $imageCount = $#ImageFiles+1;
print “Number of images needed: $neededImages; number found in
$StartingFolder: $imageCount\n”;
if ($neededImages != $imageCount) {
 print “Cannot continue. Please check numbers and image set.\
n\n”;exit;
}

Make destination folder.
unless (-e $EndingFolder) {mkdir $EndingFolder;}

Make new folders for each node and each bracket and move images
to them.

134

my $count = 0;
foreach my $nodeName (@NodeNames) {
 for (my $i=0; $i<$NumberOfImagesPerPano; $i++) {
 unless (-e “$EndingFolder/$nodeName”) {mkdir
 “$EndingFolder/$nodeName”;}
 foreach my $bracketName (@BracketNames) {
 unless (-e “$EndingFolder/$nodeName/$bracketName”)
 {mkdir “$EndingFolder/$nodeName/$bracketName”;}
 print “Moved $StartingFolder/@ImageFiles[$count] to $En
dingFolder/$nodeName/$bracketName/@ImageFiles[$count]\n”;
 rename (“$StartingFolder/@ImageFiles[$count]”, “$Endin
gFolder/$nodeName/$bracketName/@ImageFiles[$count]”);
 $count++;
 }
 }
}

ptmAcpAnoimAgeSorter.pl
#!/usr/bin/perl
This script takes sets of pano image files and sorts them into
folders and bracketed sets, saving a lot of time compared to
manually creating new folders, naming them, and then moving
files from the original to the sets. The specified folder must
contain a complete sets of files, i.e., if there are 10 nodes
and each node consists of 8 shots, each of which has 3 bracketed
images, then the folder must contain 240 images exactly.

This script also loads a PTMac template file, modifies it to use
the images files, and saves it for use in PTBatch.
use strict;
use MacPerl;
Used to set file type and creator for output template file, so
that PTBatch recognizes it.

Path and name of folder with pano images, e.g. /Users/jdoe/
Desktop/Panos/originals
my $StartingFolder = “/Users/kenstuart/Desktop/Carter”;

Path and name of folder to store sorted images.
my $EndingFolder = “/Users/kenstuart/Desktop/Carter”;

Path and name of PTMac template file.
my $PTMacTemplateFile = “/Users/kenstuart/Desktop/template.
ptmac”;

135

Number of images per pano, usually 4-8, including top and
bottom.
my $NumberOfImagesPerPano = 9;

Number of frames per shot, usually 3 if bracketing, or 1 if
no bracketing.
my $NumberOfBrackets = 1;

Names, in order, that you want to call bracketed sets, e.g.,
normal, dark, light. You should have the same number of terms
as number of brackets; if no brackets, you may wish to have a
generic term.
my @BracketNames = (“Auto”);

Number of nodes shot.
my $NumberOfNodes = 17;

Enter a set of names for the folders that will contain each
node, e.g., apse, nave, northaisle, southaisle. If you leave
the list of node names blank, the script will assign them names
in the format “Node_n” where n is the number of the node.
my @NodeNames = (“A”, “B”, “C”);
my @NodeNames = ();
my $number = 0;
if ($#NodeNames == -1) {
 for (my $i=1; $i<=$NumberOfNodes; $i++) {
 if ($i < 10) {$number = “0”.$i;} else {$number = $i;}
 push(@NodeNames, “Node_”.$number);
 }
}

Enter file extension used to in image filenames, usually either
.jpg or .tif.
my $ImageFileNameExt = “.tif”;

Load PTMac template file into memory.
open(TEMPLATE, $PTMacTemplateFile) || die (“Could not find starting
folder $PTMacTemplateFile. Please check its name in this script
on and on the machine. Names may be case-sensitive, and should
not contain certain special characters such as spaces, slashes
or colons. Cannot continue until problem is resolved.\n\n”);
my @template = <TEMPLATE>;
close(TEMPLATE);
my $template = “”;
foreach my $line (@template) {$template .= $line;}

136

Check starting folder.
unless (-e $StartingFolder) {print “Could not find starting folder
$StartingFolder. Please check its name in this script on and on
the machine. Names may be case-sensitive, and should not contain
certain special characters such as spaces, slashes or colons.
Cannot continue until problem is resolved.\n\n”; exit;}

Load image files into a list and sort it.
opendir (DIRLIST, $StartingFolder) || die print “Cannot open
directory $@.”;
my @ImageFiles = grep {/$ImageFileNameExt$/i}
readdir(DIRLIST);
@ImageFiles = sort(@ImageFiles);
close (DIRLIST);

Confirm correct number of images in directory.
my $neededImages = $NumberOfImagesPerPano * $NumberOfBrackets *
$NumberOfNodes;
my $imageCount = $#ImageFiles+1;
print “Number of images needed: $neededImages; number found in
$StartingFolder: $imageCount\n”;
 if ($neededImages != $imageCount) {
 print “Cannot continue. Please check numbers and image set.\
n\n”;
exit;
}

Make destination folder.
unless (-e $EndingFolder) {mkdir $EndingFolder;}

Make new folders for each node and each bracket and move images
to them. Also, create PTMac template file for each node/
bracket.
my $count = 0;
my %templates;
my $templateFileName = “”;
my $templateStr = “”;
foreach my $nodeName (@NodeNames) {
 for (my $i=0; $i<$NumberOfImagesPerPano; $i++) {
 unless (-e “$EndingFolder/$nodeName”) {mkdir
“$EndingFolder/$nodeName”;}
 foreach my $bracketName (@BracketNames) {
 unless (-e “$EndingFolder/$nodeName/$bracketName”) {
 mkdir “$EndingFolder/$nodeName/$bracketName”;
 $templates{$bracketName} = $template;
 }

137

 print “Moved $StartingFolder/@ImageFiles[$count] to
$EndingFolder/$nodeName/$bracketName/@ImageFiles[$count]\n”;
 rename (“$StartingFolder/@ImageFiles[$count]”, “$Endin
gFolder/$nodeName/$bracketName/@ImageFiles[$count]”);
 $templateStr = “$EndingFolder/$nodeName/$bracketName/@
ImageFiles[$count]”;
 $templateStr =~ s#/#:#g;
 $templates{$bracketName} =~ s/path:filename/$templateStr/
is;
 $count++;
 }
 }
 while((my $key, my $value) = each(%templates)) {
 # Save template file.
 $templateFileName = “$EndingFolder/$nodeName”.”_”.”$key.
ptmac”;
 open(TEMPLATE, “>$templateFileName”);
 print TEMPLATE $value;
 close (TEMPLATE);
 MacPerl::SetFileInfo(“PTMC”, “TEXT”, $templateFileName);
 }
}

