APPENDIX 4. SAMPLE BATCH SCRIPTS

Contains two scripts by Ken Stuart: PanolmageSorter.pl and PTMacPanolmageSorter.pl
(for MacPerl).

PANOIMAGESORTER.PL

#!/usr/bin/perl

# This script takes sets of pano image files and sorts them into
# folders and bracketed sets, saving a lot of time compared to
# manually creating new folders, naming them, and then moving
# files from the original to the sets. The specified folder must
# contain a complete sets of files, i.e., 1f there are 10 nodes
# and each node consists of 8 shots, each of which has 3 bracketed
# images, then the folder must contain 240 images exactly.

use strict;

# Path and name of folder with pano images, e.g.
# /Users/jdoe/Desktop/Panos/originals
my SStartingFolder = “/Users/kenstuart/Desktop/originals”;

# Path and name of folder to store sorted images.
my SEndingFolder = “/Users/kenstuart/Desktop/project”;

# Number of images per pano, usually 4-8, including top and
# bottom.
my S$NumberOfImagesPerPano = 8;

# Number of frames per shot, usually 3 if bracketing, or 1 if
# no bracketing.
my $NumberOfBrackets = 3;

Names, in order, that you want to call bracketed sets, e.g.,
normal, dark, light. You should have the same number of terms
as number of brackets; if no brackets, you may wish to have a
generic term.

my @BracketNames = (“Normal”, “Dark”, “Light”);

R

# Number of nodes shot.
my SNumberOfNodes = 17;

# Enter a set of names for the folders that will contain each
# node, e.g., apse, nave, northaisle, southaisle. If you leave
# the list of node names blank, the script will assign them names



# in the format “Node n” where n is the number of the node.

# my @NodeNames = (“A”, “B”, “C”);
my @NodeNames = ();
my Snumber = 0;
1f (S#NodeNames == -1) {
for (my $i=1; $i<=S$NumberOfNodes; S$i++) {
if ($1 < 10) {Snumber = “0”.$1;} else {$Snumber = $i;}
push (@dNodeNames, “Node_”.$number);

# Enter file extension used to in image filenames, usually either
# .jpg or .tif.
my S$SImageFileNameExt = “.jpg”;

# Check starting folder.

unless (-e S$StartingFolder) {print “Could not find starting folder
$StartingFolder. Please check its name in this script on and on
the machine. Names may be case-sensitive, and should not contain
certain special characters such as spaces, slashes or colons.
Cannot continue until problem is resolved.\n\n”; exit;}

# Load image files into a list and sort it.

opendir (DIRLIST, S$StartingFolder) || die print “Cannot open
directory $@.";

my @ImageFiles = grep {/$ImageFileNameExt$/1}
readdir (DIRLIST) ;

@ImageFiles = sort (@ImageFiles);

close (DIRLIST);

# Confirm correct number of images in directory.
my S$neededImages = $NumberOfImagesPerPano * S$SNumberOfBrackets *
S$SNumberOfNodes;
my S$imageCount = S$#ImageFiles+1;
print “Number of images needed: S$neededImages; number found in
SStartingFolder: S$imageCount\n”;
if (SneededImages != $imageCount) {

print “Cannot continue. Please check numbers and image set.\
n\n”;exit;

}

# Make destination folder.
unless (-e $EndingFolder) {mkdir S$EndingFolder;}

# Make new folders for each node and each bracket and move images
# to them.

133



my Scount = 0;
foreach my $nodeName (@NodeNames) {
for (my $1=0; $i<$NumberOfImagesPerPano; S$i++) {
unless (—e “$EndingFolder/$nodeName”) {mkdir
“SEndingFolder/$nodeName”; }
foreach my S$SbracketName (@BracketNames) {
unless (-e “$EndingFolder/$nodeName/SbracketName”)
{mkdir “S$EndingFolder/$nodeName/SbracketName”; }
print “Moved $StartingFolder/@ImageFiles[S$Scount] to SEn
dingFolder/S$nodeName/SbracketName/@ImageFiles [Scount]\n”;
rename (“$StartingFolder/@ImageFiles[$Scount]”, “S$Endin
gFolder/$nodeName/SbracketName/Q@ImageFiles[$Scount]”) ;
Scount++;

PTMACPANOIMAGESORTER.PL

#!/usr/bin/perl

# This script takes sets of pano image files and sorts them into
folders and bracketed sets, saving a lot of time compared to
manually creating new folders, naming them, and then moving
files from the original to the sets. The specified folder must
contain a complete sets of files, i.e., 1f there are 10 nodes
and each node consists of 8 shots, each of which has 3 bracketed

T

images, then the folder must contain 240 images exactly.

# This script also loads a PTMac template file, modifies it to use
# the images files, and saves it for use in PTBatch.

use strict;

use MacPerl;

# Used to set file type and creator for output template file, so
# that PTBatch recognizes it.

# Path and name of folder with pano images, e.g. /Users/jdoe/
# Desktop/Panos/originals
my S$StartingFolder = “/Users/kenstuart/Desktop/Carter”;

# Path and name of folder to store sorted images.
my $EndingFolder = “/Users/kenstuart/Desktop/Carter”;

# Path and name of PTMac template file.

my S$PTMacTemplateFile = “/Users/kenstuart/Desktop/template.
ptmac”;

134



# Number of images per pano, usually 4-8, including top and
# bottom.
my SNumberOfImagesPerPano = 9;

# Number of frames per shot, usually 3 if bracketing, or 1 if
# no bracketing.
my SNumberOfBrackets = 1;

# Names, in order, that you want to call bracketed sets, e.g.,
# normal, dark, light. You should have the same number of terms
# as number of brackets; if no brackets, you may wish to have a
# generic term.

my @BracketNames = (“Auto”);

# Number of nodes shot.
my SNumberOfNodes = 17;

# Enter a set of names for the folders that will contain each
# node, e.g., apse, nave, northaisle, southaisle. If you leave
# the list of node names blank, the script will assign them names
# in the format “Node n” where n is the number of the node.
# my @NodeNames = (“A”, “B”, “C”);
my @NodeNames = ();
my Snumber = 0;
i1f ($#NodeNames == -1) {
for (my $i=1; $i<=$NumberOfNodes; S$i++) {
if ($1i < 10) {$Snumber = “0”.$1i;} else {Snumber = $i;}

push (@dNodeNames, “Node_”.$number);

# Enter file extension used to in image filenames, usually either
# .jpg or .tif.
my $ImageFileNameExt = “.tif”;

# Load PTMac template file into memory.

open (TEMPLATE, $PTMacTemplateFile) || die (“Could not find starting
folder $PTMacTemplateFile. Please check its name in this script
on and on the machine. Names may be case-sensitive, and should
not contain certain special characters such as spaces, slashes
or colons. Cannot continue until problem is resolved.\n\n”);

my @template = <TEMPLATE>;

close (TEMPLATE) ;

my Stemplate = “7;

foreach my $line (@template) {Stemplate .= $line;}

135



# Check starting folder.

unless (-e S$StartingFolder) {print “Could not find starting folder
$StartingFolder. Please check its name in this script on and on
the machine. Names may be case-sensitive, and should not contain
certain special characters such as spaces, slashes or colons.
Cannot continue until problem is resolved.\n\n”; exit;}

# Load image files into a list and sort it.

opendir (DIRLIST, S$StartingFolder) || die print “Cannot open
directory $@.";

my @ImageFiles = grep {/$ImageFileNameExt$/1}
readdir (DIRLIST) ;

@ImageFiles = sort (@ImageFiles);

close (DIRLIST);

# Confirm correct number of images in directory.
my S$neededImages = $NumberOfImagesPerPano * S$SNumberOfBrackets *
S$SNumberOfNodes;
my S$imageCount = $#ImageFiles+1;
print “Number of images needed: S$neededImages; number found in
SStartingFolder: S$imageCount\n”;

if (SneededImages != $imageCount) {

print “Cannot continue. Please check numbers and image set.\
n\n”;
exit;

}

# Make destination folder.
unless (-e S$EndingFolder) {mkdir S$EndingFolder;}

# Make new folders for each node and each bracket and move images
# to them. Also, create PTMac template file for each node/
# bracket.
my Scount = 0;
my %templates;
my StemplateFileName = “7;
my StemplateStr = “7;
foreach my $nodeName (@NodeNames) {
for (my $1=0; $i<$NumberOfImagesPerPano; S$i++) {
unless (—e “$EndingFolder/$nodeName”) {mkdir
“S$SEndingFolder/S$nodeName”; }
foreach my S$bracketName (@BracketNames) {
unless (-e “S$EndingFolder/S$nodeName/SbracketName”) ({
mkdir “S$EndingFolder/S$nodeName/SbracketName”;
Stemplates{SbracketName} = Stemplate;

136



print “Moved $StartingFolder/@ImageFiles[Scount] to
S$SEndingFolder/S$nodeName/SbracketName/@ImageFiles[$Scount]\n”;

rename (“$StartingFolder/@ImageFiles[Scount]”, “S$Endin
gFolder/$nodeName/SbracketName/@ImageFiles[Scount]”) ;

StemplateStr = “$SEndingFolder/$nodeName/SbracketName/@
ImageFiles[Scount]”;

StemplateStr =~ s#/#:4#g;

Stemplates{SbracketName} =~s/path:filename/StemplateStr/

is;
Scount++;
}
}
while ( (my Skey, my S$value) = each(%templates)) {
# Save template file.
StemplateFileName = “S$EndingFolder/SnodeName”.” ”.”Skey.
ptmac”;

open (TEMPLATE, “>S$StemplateFileName”);

print TEMPLATE S$value;

close (TEMPLATE) ;

MacPerl::SetFileInfo (“PTMC”, “TEXT”, StemplateFileName) ;

137



